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Abstract. The mathematical concept of document resemblance cap-
tures well the informal notion of syntactic similarity. The resemblance
can be estimated using a fixed size “sketch” for each document. For a
large collection of documents (say hundreds of millions) the size of this
sketch is of the order of a few hundred bytes per document.

However, for efficient large scale web indexing it is not necessary to de-
termine the actual resemblance value: it suffices to determine whether
newly encountered documents are duplicates or near-duplicates of docu-
ments already indexed. In other words, it suffices to determine whether
the resemblance is above a certain threshold. In this talk we show how
this determination can be made using a ”sample” of less than 50 bytes
per document.

The basic approach for computing resemblance has two aspects: first,
resemblance is expressed as a set (of strings) intersection problem, and
second, the relative size of intersections is evaluated by a process of
random sampling that can be done independently for each document.
The process of estimating the relative size of intersection of sets and the
threshold test discussed above can be applied to arbitrary sets, and thus
might be of independent interest.

The algorithm for filtering near-duplicate documents discussed here has
been successfully implemented and has been used for the last three years
in the context of the AltaVista search engine.

1 Introduction

A Communist era joke in Russia goes like this: Leonid Brezhnev (the Party
leader) wanted to get rid of the Premier, Aleksey Kosygin. (In fact he did, in
1980.) So Brezhnev, went to Kosygin and said: “My dear friend and war comrade
Aleksey, I had very disturbing news: I just found out that you are Jewish: I have
no choice, I must ask you to resign.” Kosygin, in total shock says: “But Leonid,
as you know very well I am not Jewish!”; then Brezhnev says: “Well, Aleksey,
then think about it...”
? Most of this work was done while the author was at Compaq’s System Research

Center in Palo Alto. A preliminary version of this work was presented (but not
published) at the “Fun with Algorithms” conference, Isola d’Elba, 1998.
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What this has to do with near-duplicate documents? In mid 1995, the Al-
taVista web search engine was built at the Digital research labs in Palo Alto (see
[10]). Soon after the first internal prototype was deployed, a colleague, Chuck
Thacker, came to me and said: “I really like AltaVista, but it is very annoying
that often half the first page of answers is just the same document in many
variants.” “I know” said I. “Well,” said Chuck, “you did a lot of work on fin-
gerprinting documents; can you make up a fingerprinting scheme such that two
documents that are near-duplicate get the same fingerprint?” I was of course
indignant: “No way!! You miss the idea of fingerprints completely: fingerprints
are such that with high probability two distinct documents will have different
fingerprints, no matter how little they differ! Similar documents getting the same
fingerprint is entirely against their purpose.” So, of course, Chuck said: “Well,
then think about it...” ...and as usual, Chuck was right.

Eventually I found found a solution to this problem, based on a mathematical
notion called resemblance [4]. Surprisingly, fingerprints play an essential role in
it.

The resemblance measures whether two (web) documents are roughly the
same, that is, they have the same content except for modifications such as for-
matting, minor corrections, capitalization, web-master signature, logo, etc. The
resemblance is a number between 0 and 1, defined precisely below, such that
when the resemblance is close to 1 it is likely that the documents are roughly
the same. To compute the resemblance of two documents it suffices to keep for
each document a “sketch” of a few (three to eight) hundred bytes consisting
of a collection of fingerprints of “shingles” (contiguous subsequences of words,
sometimes called “q-grams”). The sketches can be computed fairly fast (linear in
the size of the documents) and given two sketches the resemblance of the corre-
sponding documents can be computed in linear time in the size of the sketches.
Furthermore, clustering a collection of m documents into sets of closely resem-
bling documents can be done in time proportional to m log m rather than m2.

This first use of this idea was in a joint work with Steve Glassman, Mark
Manasse, and Geoffrey Zweig to cluster a collection of over 30,000,000 docu-
ments into sets of closely resembling documents (above 50% resemblance). The
documents were retrieved from a month long “full” crawl of the World Wide
Web performed by AltaVista in April 96. (See [7].) (It is amusing to note that
three years later, by mid 1999, AltaVista was crawling well over 20 million pages
daily.)

Besides fingerprints, another essential ingredient in the computation of re-
semblance is a pseudo-random permutation of a large set, typically the set
[0, . . . , 264 − 1]. In turns out that to achieve the desired result, the permuta-
tion must be drawn from a min-wise independent family of permutations. The
concept of min-wise independence is in the same vein as the well known concept
of pair-wise independence, and has many interesting properties. Moses Charikar,
Alan Frieze, Michael Mitzenmacher, and I studied this concept in a paper [5].

The World Wide Web continues to expand at a tremendous rate. It is esti-
mated that the number of pages doubles roughly every nine moths to year [2,14].
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Hence the problem of eliminating duplicates and near-duplicates from the index
is extremely important. The fraction of the total WWW collection consisting of
duplicates and near-duplicates has been estimated at 30 to 45%. (See [7] and
[13].) These documents arise innocently (e.g. local copies of popular documents,
mirroring), maliciously (e.g., “spammers” and “robot traps”), and erroneously
(crawler or server mistakes). In any case they represent a serious problem for
indexing software for two main reasons: first, indexing of duplicates wastes ex-
pensive resources and second, users are seldom interested in seeing documents
that are “roughly the same” in response to their queries.

However, when applying the sketch computation algorithm to the entire cor-
pus indexed by AltaVista then even the modest storage costs described above
become prohibitive. On the other hand, we are interested only whether the re-
semblance is above a very high threshold; the actual value of the resemblance
does not matter.

This paper describes how to apply further processing to the sketches men-
tioned above to construct for each document a short vector of “features.” With
high probability, two documents share more than a certain number of features
if and only if their resemblance is very high. For instance, using 6 features of 8
bytes, that is, 48 bytes/document, for a set of 200,000,000 documents:

– The probability that two documents that have resemblance greater than
97.5% do not share at least two features is less than 0.01. The probability
that two documents that have resemblance greater than 99% do not share
at least two features is less than 0.00022.

– The probability that two documents that have resemblance less than 77%
do share two or more features is less than 0.01 The probability that two
documents that have resemblance less than 50% share two or more features
is less than 0.6 × 10−7.

Thus the feature based mechanism for near-duplicate detection has excellent
filtering properties. The probability of acceptance for this example (that is more
than 2 common features) as a function of resemblance is graphed in Figure 1 on
a linear scale and in Figure 2 on a logarithmic scale.

2 Preliminaries

We start by reviewing some concepts and algorithms described in more detail in
[4] and [7].

The basic approach for computing resemblance has two aspects: First, re-
semblance is expressed as a set intersection problem, and second, the relative
size of intersections is evaluated by a process of random sampling that can be
done independently for each document. (The process of estimating the relative
size of intersection of sets can be applied to arbitrary sets.)

The reduction to a set intersection problem is done via a process called
shingling. Via shingling each document D gets an associated set SD. This is
done as follows:
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We view each document as a sequence of tokens. We can take tokens to be
letters, or words, or lines. We assume that we have a parser program that takes
an arbitrary document and reduces it to a canonical sequence of tokens. (Here
“canonical” means that any two documents that differ only in formatting or
other information that we chose to ignore, for instance punctuation, formatting
commands, capitalization, and so on, will be reduced to the same sequence.) So
from now on a document means a canonical sequence of tokens.

A contiguous subsequence of w tokens contained in D is called a shingle.
A shingle of length q is also known as a q-gram, particularly when the tokens
are alphabet letters. Given a document D we can associate to it its w-shingling
defined as the set of all shingles of size w contained in D. So for instance the
4-shingling of

(a,rose,is,a,rose,is,a,rose)

is the set

{(a,rose,is,a), (rose,is,a,rose), (is,a,rose,is)}

(It is possible to use alternative definitions, based on multisets. See [4] for de-
tails.)

Rather than deal with shingles directly, it is more convenient to associate to
each shingle a numeric uid (unique id). This done by fingerprinting the shingle.
(Fingerprints are short tags for larger objects. They have the property that if two
fingerprints are different then the corresponding objects are certainly different
and there is only a small probability that two different objects have the same
fingerprint. This probability is typically exponentially small in the length of the
fingerprint.)

For reasons explained in [4] it is particularly advantageous to use Rabin
fingerprints [15] that have a very fast software implementation [3]. Rabin finger-
prints are based on polynomial arithmetic and can be constructed in any length.
It is important to choose the length of the fingerprints so that the probability of
collisions (two distinct shingles getting the same fingerprint) is sufficiently low.
(More about this below.) In practice 64 bits Rabin fingerprints are sufficient.

Hence from now on we associate to each document D a set of numbers SD

that is the result of fingerprinting the set of shingles in D. Note that the size of
SD is about equal to the number of words in D and thus storing SD on-line for
every document in a large collection is infeasible.

The resemblance r(A, B) of two documents, A and B, is defined as

r(A, B) =
|SA ∩ SB |
|SA ∪ SB | .

Experiments seem to indicate that high resemblance (that is, close to 1) captures
well the informal notion of “near-duplicate” or “roughly the same”. (There are
analyses that relate the “q-gram distance” to the edit-distance – see [16].)

Our approach to determining syntactic similarity is related to the sampling
approach developed independently by Heintze [8], though there are differences
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in detail and in the precise definition of the measures used. Related sampling
mechanisms for determining similarity were also developed by Manber [9] and
within the Stanford SCAM project [1,11,12].

To compute the resemblance of two documents it suffices to keep for each
document a relatively small, fixed size sketch. The sketches can be computed
fairly fast (linear in the size of the documents) and given two sketches the re-
semblance of the corresponding documents can be computed in linear time in
the size of the sketches.

This is done as follows. Assume that for all documents of interest SD ⊆
{0, . . . , n−1} def

= [n]. (As noted, in practice n = 264.) Let π be chosen uniformly
at random over Sn , the set of permutations of [n]. Then

Pr
(
min{π(SA)} = min{π(SB)}) =

|SA ∩ SB |
|SA ∪ SB | = r(A, B). (1)

Proof. Since π is chosen uniformly at random, for any set X ⊆ [n] and any
x ∈ X, we have

Pr
(
min{π(X)} = π(x)

)
=

1
|X| . (2)

In other words all the elements of any fixed set X have an equal chance to
become the minimum element of the image of X under π.

Let α be the smallest image in π(SA∪SB). Then min{π(SA)} = min{π(SB)},
if and only if α is the image of an element in SA ∩ SB . Hence

Pr
(
min{π(SA)} = min{π(SB)}) = Pr(π−1(α) ∈ SA ∩ SB)

=
|SA ∩ SB |
|SA ∪ SB | = rw(A, B).

Hence, we can choose, once and for all, a set of t independent random per-
mutations π1, . . . , πt. (For instance we can take t = 100.) For each document D,
we store a sketch, which is the list

S̄A = (min{π1(SA)}, min{π2(SA)}, . . . , min{πt(SA)}).

Then we can readily estimate the resemblance of A and B by computing how
many corresponding elements in S̄A and S̄B are equal. (In [4] it is shown that
in fact we can use a single random permutation, store the t smallest elements
of its image, and then merge-sort the sketches. However for the purposes of this
paper independent permutations are necessary.)

In practice, we have to deal with the fact it is impossible to choose and
represent π uniformly at random in Sn for large n. We are thus led to consider
smaller families of permutations that still satisfy the min-wise independence
condition given by equation (2), since min-wise independence is necessary and
sufficient for equation (1) to hold. This is further explored in [5] where it is shown
that random linear transformations are likely to suffice in practice. See also [6]
for an alternative implementation. We will ignore this issue in this paper.
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So far we have seen how to estimate the resemblance of a pair of documents.
For this purpose the shingle fingerprints can be quite short since collisions have
only a modest influence on our estimate if we first apply a random permutation
to the shingles and then fingerprint the minimum value.

However sketches allow us to group a collection of m documents into sets of
closely resembling documents in time proportional to m log m rather than m2,
assuming that the clusters are well separated which is the practical case.

We perform the clustering algorithm in four phases. In the first phase, we
calculate a sketch for every document as explained. This step is linear in the
total length of the documents.

To simplify the exposition of the next three phases we’ll say temporarily
that each sketch is composed of shingles, rather than images of the fingerprint
of shingles under random permutations of [n].

In the second phase, we produce a list of all the shingles and the documents
they appear in, sorted by shingle value. To do this, the sketch for each document
is expanded into a list of 〈shingle value, document ID〉 pairs. We simply sort this
list. This step takes time O(m log m) where m is the number of documents.

In the third phase, we generate a list of all the pairs of documents that share
any shingles, along with the number of shingles they have in common. To do
this, we take the file of sorted 〈shingle, ID〉 pairs and expand it into a list of
〈ID, ID, count of common shingles〉 triplets by taking each shingle that appears
in multiple documents and generating the complete set of 〈ID, ID, 1〉 triplets
for that shingle. We then apply a merge-sort procedure (adding the counts for
matching ID - ID pairs) to produce a single file of all 〈ID, ID, count〉 triplets
sorted by the first document ID. This phase requires the greatest amount of disk
space because the initial expansion of the document ID triplets is quadratic in
the number of documents sharing a shingle, and initially produces many triplets
with a count of 1. Because of this fact we must choose the length of the shingle
fingerprints so that the number of collisions is small. To ensure this we can take
it to be say 2 log2 m + 20. In practice 64 bits fingerprints suffice.

In the final phase, we produce the complete clustering. We examine each
〈ID, ID, count〉 triplet and decide if the document pair exceeds our threshold
for resemblance. If it does, we add a link between the two documents in a union-
find algorithm. The connected components output by the union-find algorithm
form the final clusters.

3 Filtering Near-Duplicates

Consider two documents, A and B, that have resemblance ρ. If ρ is close to 1,
then almost all the elements of S̄A and S̄B will be pairwise equal. The idea of
duplicate filtering is to divide every sketch into k groups of s elements each. The
probability that all the elements of a group are pair-wise equal is simply ρs and
the probability that two sketches have r or more equal groups is

Pk,s,r =
∑

r≤i≤k

(
k

i

)
ρs·i(1 − ρs)k−i.
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The remarkable fact is that for suitable choices of [k, s, r] the polynomial
Pk,s,r behaves as a very sharp high-band pass filter even for small values of k.
For instance Figure 1 graphs P6,14,2(x) on a linear scale and Figure 2 graphs it
on a logarithmic scale. The sharp drop-off is obvious.

To use this fact, we first compute for each document D the sketch S̄D as
before, using k·s independent permutations. (We can now be arbitrarily generous
with the length of the fingerprints used to create shingle uid’s; however 64 bits
are plenty for our situation.) We then split S̄D into k groups of s elements and
fingerprint each group. (To avoid dependencies, we use a different irreducible
polynomial for these fingerprints.) We can also concatenate to each group a
group id number before fingerprinting.

Now all we need to store for each document is these k fingerprints, called
“features”. Because fingerprints could collide the probability that two features
are equal is

ρs + pf ,

where pf is the collision probability. This would indicate that it suffices to use
fingerprints long enough to so that pf is less than say 10−6. However, when
applying the filtering mechanism to a large collection of documents, we again
use the clustering process described above, and hence we must avoid spurious
sharing of features. Nevertheless, for our problem 64 bits fingerprints are again
sufficient.

It is particularly convenient, if possible, to choose the threshold r to be 1 or
2. If r = 2 then the third phase of the merging process becomes much simpler
since we don’t need to keep track of how many features are shared by various
pairs of documents: we simply keep a list of pairs known to share at least one
feature. As soon as we discover that one of these pairs shares a second feature,
we know that with high probability the two documents are near-duplicates, and
thus one of them can be removed from further consideration. If r = 1 the third
phase becomes moot. In general it is possible to avoid the third phase if we
again group every r features into a super-feature, but this forces the number of
features per document to become

(
k
r

)
.

4 Choosing the Parameters

As often the case in filter design, choosing the parameters is half science, half
black magic. It is useful to start from a target threshold resemblance ρ0. Ideally

Pk,s,r(ρ) =
{

1, for ρ ≥ ρ0;
0, otherwise.

Clearly, once s is chosen, r should be approximately k · ρs
0 and the larger k (and

r) the sharper the filter. (Of course, we are restricted to integral values for k, s,
and r.)

If we make the (unrealistic) assumption that resemblance is uniformly dis-
tributed between 0 and 1 within the set of pairs of documents to be checked,
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then the total error is proportional to
∫ ρ0

0

Pk,s,r(x) dx +
∫ 1

ρ0

(
1 − Pk,s,r(x)

)
dx

Differentiating with respect to ρ0 we obtain that this is minimized when P (ρ0) =
1/2. To continue with our example we have P6,14,2(x) = 1/2 for x = 0.909... .

A different approach is to chose s so that the slope of xs at x = ρ0 is
maximized. This happens when

∂

∂s

(
sρs−1

0

)
= 0 (3)

or s = 1/ ln(1/ρ0). For s = 14 the value that satisfies (3) is ρ0 = 0.931... .
In practice these ideas give only a starting point for the search for a filter

that provides the required trade-offs between error bounds, time, and space. It
is necessary to graph the filter and do experimental determinations.

5 Conclusion

We have presented a method that can eliminate near-duplicate documents from
a collection of hundreds of millions of documents by computing independently
for each document a vector of features less than 50 bytes long and comparing
only these vectors rather than entire documents. The entire processing takes
time O(m logm) where m is the size of the collection. The algorithm described
here has been successfully implemented and is in current use in the context of
the AltaVista search engine.
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